#import data
df = pd.DataFrame.from_csv('../data/data.csv')
print(df.head())
Open High Low Close Adj Close Volume
Date
2014-12-31 46.730000 47.439999 46.450001 46.450001 42.848763 21552500
2015-01-02 46.660000 47.419998 46.540001 46.759998 43.134731 27913900
2015-01-05 46.369999 46.730000 46.250000 46.330002 42.738068 39673900
2015-01-06 46.380001 46.750000 45.540001 45.650002 42.110783 36447900
2015-01-07 45.980000 46.459999 45.490002 46.230000 42.645817 29114100
# Display the size of a DataFrame
df.shape
(780, 6)
# Display the summary statistics of a DataFrame
df.describe()
# Slice row(s) of data
# Selection by label
# select all the price information of data in 2016.
df_2015 = df.loc['2015-01-01':'2015-12-31']
# Selection by position [row index, column index]
df.iloc[0, 0]
# plot only the Close price yearly
plt.figure(figsize=(10, 8))
plt.figure(figsize=(10, 8))
ms['Close'].loc['2015-01-01':'2015-12-31'].plot()
ms['Close'].loc['2016-01-01':'2016-12-31'].plot()
ms['Close'].loc['2017-01-01':'2017-12-31'].plot()
plt.show()